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1. Introduction

For describtion tachyon dynamics of open-closed p-adic string the following
non-linear pseudo-differential equations of motion

p−
1
4 �Ψ = Ψp2

+ λ2Ψp(p−1)/2
(
Φp+1 − 1

)
, (1.1a)

p−
1
2 �Φ = ΦpΨp(p−1)/2 (1.1b)

has been suggested (Brekke, Freund, 1993; Moeller, Schnabl, 2004). Here Ψ(t)
and Φ(t) are tachyon fields for closed and open strings resp., � = −∂2

t +∇2
x is

d-dimentional d’Alembertian, λ = h
g , where h and g are closed and open strings

coupling constantas resp., p is a prime, p = 2, 3, 5, . . . . (In what follows, p is
assumed to be an integer greater then one.)

We consider one-dimetional case d = 1 and λ = 0.

Ψp2
(t) = (p1/4∂2

t Ψ)(t), t ∈ R, (1.2a)

Φp(t)Ψp(p−1)/2(t) = (p1/2∂2
t Φ)(t), t ∈ R, (1.2b)

The new class of non-linear Eqs (1.1) contains formaly an infinite number
of derivatives reflecting a non-local interaction in string field theory. They
involve pseudo-differential operators within the symbols p−ξ2/4 and p−ξ2/2. After
changing the arguments of the fields

ψ(t) = Ψ(t
√

log p), ϕ(t) = Φ(t
√

log p),

the system of Eqs (1.2) takes the form

ψp2
(t) = (e1/4∂2

t ψ)(t), t ∈ R, (1.3a)

ϕp(t)ψp(p−1)/2(t) = (e1/2∂2
t ϕ)(t), t ∈ R, (1.3b)

where the integral operators ex∂2
t are defined by the formular

(ex∂2
t f)(t) =

1√
4πx

∫ ∞

−∞
exp

[
− (t− τ)2

4x

]
f(τ)dτ, x > 0. (1.4)
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We point out that the veriables x and t in Eq.(1.4) have been interchanged
compared with the classical heat conduction operator. The family of operators
ex∂2

t , x > 0 form a semigroup

ex∂2
t ey∂2

t = e(x+y)∂2
t , x > 0, y > 0.

Eq.(1.3b) for ψ = 1 defines equation of motion for open string

ϕp = (e1/2∂2
t ϕ)(t), t ∈ R. (1.5)

System of Eqs (1.3) has the following trivial solutions (ψ,ϕ) (vacuums):

(0, 0), (1, 1), (1, 0) ∀p; (1,−1), (−1, 0) p− odd ;
(−1, 1), (−1,−1) p = 4n+ 1. (1.6)

For Eq.(1.3a) (closed string) in accordance with the vacuum solutions (1.6),
we set the boundary conditions

lim
t→−∞

ψ(t) = lim
t→∞

ψ(t) = 1. (1.7)

– boundary-value problems (b.-v.ps) (1.3a)-(1.7). For Eq.(1.5) (open string) -

lim
t→∞

ϕ(t) = 1, lim
t→−∞

ϕ(t) =

{
−1, p− odd ,
0, p− even

(1.8)

– b.-v.p. (1.5)–(1.8). Only real non-trivial solutions are physically intresting,
and we consider only such solutions in what follows.

The posed b.-v.ps and their generalizations are of intrest not only for p-
adic string theory but also for cosmology. Many physicists and mathematicians
widely applying computer techniques made a lot of theoretical contributions to
these b.-v.ps., among them Witten, Gross, Erler, Freund, Sen, Brekke, Moeller,
Schnabl, Green, Schwarz, Frampton, Okada, Calgagni, Zwiebach, Ghoshal,
Minahan, Barnaby, Coletti, Sigalov, Biswas, Cline,... As for Russian school, the
first is I.Ja.Aref’eva and her many pupils – Koshelev, Joukovskaya, Zubarev,...,
and also Volovich, Prokhorenko, Volovich-jr., Vladimirov.

We consider the posed problems in the class of real bounded functions,
different from vacuums. The first question is existence or non-existens solutions.
If they exist, we present the following topics:

• À priori properties and estimates of solutions.
• Hermit-series expantion of solutions.
• Reducing to a b.-v.p. for the heat equation.
• Tchebyshev-series expantion of periodic solutions.
• Application the Gauss quadrature formulas to approximate the equation.
For all b.-v.ps posed the first results are (Vladimirov, Volovich-jr., 2004):
Theorem 1. If a solution belongs to the algebra of real tempered distributions

S̃ ′+, then it is a vacuum.
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Here f̃ denotes the Fourier-transform of f and S ′+ are tempered distributions
with support in R+.

Theorem 2. If a solution is a non-negative bounded function, then it is a
vacuum.

We consider more general equation

ϕp(t) = (ex0∂2
t ϕ)(t), t ∈ R, p ≥ 2 integer , x0 > 0 (1.9)

with corresponding boundary conditions. It is equivalent to the non-linear b.-
v.p. for the heat equation for interpolaiting function u(x, t) (Vladimirov, 2005)

∂u

∂x
=
∂2u

∂t2
, 0 < x ≤ x0, t ∈ R, (1.10)

u(0, t) = ϕ(t), u(x0, t) = ϕp(t), t ∈ R (1.11)

with the same boundary conditios. By this method many results has been
obtained for b.-v.ps posed.

2. Closed string

For closed string the the Eq.(1.3a) is

ψp2
(t) =

1√
π

∫ ∞

−∞
e−(τ−τ)2ψ(τ)dτ, t ∈ R (2.1)

with boundary conditions (1.7).
For even p there is no even continuous monotonic increasing solutions for

t > 0 (Moeller, Zwiebach, 2002; Vladimirov); nevertheless, it is possible that
piece-wise continuous solutions may exists, but the existens of such solutions do
not jet proved. For p = 3, using numerical methods on computers, I.Ya.Aref’eva
showed the existence (at least practically) even continuous solutions with two
(simple) zeros.

Eq.(2.1) is equivalent to the non-linear integral equation

ψp2
(t) =

∫ ∞

−∞
K1/4(t− τ)[p2ψ(τ)− ψp2

(τ)]dτ, t ∈ R, (2.2)

where the kernel K1/4(t) is real continuous, positive and positive-definite
function from L1(R), defined by the formula

K1/4(t) =
∞∑

n=1

1√
πnp2n

e−
t2
n ,

∫ ∞

−∞
K1/4(t)dt =

1
p2 − 1

. (2.3)

• − 1 < ψ(t) < 1, t ∈ R.

• 1− ψ ∈ Lq(R), 1 ≤ q ≤ ∞.

• ψ′(±∞) = 0; ψ′ ∈ L1(R).
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•
∫∞
−∞[1− ψ(t)]dt =

∫∞
−∞[1− ψp2

(t)]dt.

• |
∫ t

−∞[ψ(τ)− ψp2
(τ)]dτ | < 1

2
√

π
, t ∈ R.

Denote by tk, . . . < tm < tm−1 < . . . < t1 real zeros and σk, k = 1, 2, . . . ,m
their multiplicity of function ψp2

(t). Here 2 ≤ m <∞, m ≥ maxk σk; for even p
σk ≥ 2 is even; for m = 2 σ1 = σ2 = 1, if p is odd, and σ1 = σ2 = 2, if p is even.

• ψp2
(t) = ak

σk! (t−tk)σk(1+O(|t−tk|), t→ tk, and the following equalities
take place

2n

√
π

∫ ∞

−∞
(t− τ)ne−(t−τk)2ψ(τ)dτ =

{
ak 6= 0, n = σk,

0, n = 1, 2, . . . , σk − 1.

• ψ ∈ Lipα(R), α ≥ 1/p2.

• ψ′ ∈ L2(R) iff σk > p2/2, k = 1, 2, . . . ,m.

•
∫∞
−∞ ψ2(t)[1− ψp2−1(t)]dt ≤ 1

4‖ψ
′‖2.

• Sobolev’s inequality: 4 < ‖1− ψ‖‖ψ′‖.

• Branching of zeros. Let ψp2
(t) has a zero of multiplicity 2n at t = 0.

Then the interpolating function u(1/4 − ε, t) = 0 has pricisely 2n simple real
roots

t±k (ε) = ±λk

√
ε+O(ε) as ε→ +0, k = 1, 2, . . . , n, (2.4)

where ±λk are the roots of the Hermite polynomial H2n.

3. Open string

The equation of motion (1.5) is

ϕp(t) =
1√
2π

∫ ∞

−∞
exp

[
− (t− τ)2

2

]
ϕ(τ)dτ, t ∈ R (3.1)

with boundary conditions (1.8).
For odd p the existence of continuous odd monotonic for t > 0 solution has

been proved (Volovich-jr., 2003). The basic properties of solutions are similar
to the closed string ones. However there are some differences, in particular:

For odd p

• 1− |ϕ|, ϕ− sgn t ∈ Lq(R), 1 ≤ q ≤ ∞.

• ϕ′(±∞) = 0, ϕ′, |ϕ|′ ∈ L1(R).

• ϕ′, |ϕ|′ ∈ L2(R) iff σk > p/2, k = 1, 2, . . . ,m.

• (|ϕ|, |ϕ| − e1/2∂2
t |ϕ|) ≤ 1

2‖ϕ
′‖2.

• Sobolev’s inequality:
8 < ‖1− |ϕ|‖2 + ‖ϕ′‖2.
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For even p

• 1− ϕ ∈ Lq(a,∞), 1 ≤ q ≤ ∞, a > −∞.

• ϕ′ ∈ L1(a,∞), a > −∞.

• ϕ ∈ Lipα[a,∞), α ≥ 2
p , a > −∞.

• ϕ′, |ϕ|′ ∈ L2(a,∞) iff σk > 2/p, tk ≥ a.

4. Hermite-series expansion of solutions

Definition. Denote by Lα
2 , α > 0 the scale of weighted separable Hilbert

spaces, consisting of measurable functions square summable on R with respect
to the measure

dµα(t) =
√
α

π
e−αt2dt,

∫ ∞

−∞
dµα(t) = 1,

with the inner product and norm

(f, g)α =
∫ ∞

−∞
f(t)ḡ(t)dµα(t), ‖f‖ =

√
(f, f), f, g ∈ Lα

2 .

• The operator ex∂2
t maps continuously Lα

2 into Lβ
2 for

0 < α <
2
x
, β >

α

1− 2αx
.

• If ϕ ∈ L1
2, then it expands in a series

ϕ(t) =
∞∑

n=0

an
Hn(t)
2nn!

, an = (ϕ,Hn),

which converge in L1
2; if furthermoore ϕ is a solution to Eq.(1.9) for x0 = 1/4

then ϕp(t) expands in the Taylor series

ϕp(t) =
∞∑

n=0

an
tn

n!
,

which converges uniformly on every compact set in R. If the solution belongs to
L1/2

2 , then the relations

(ϕp,Hn)1 = (ϕ, Vn)1/2, n = 0, 1, . . .

hold, where Vn are modified Hermite’s polynomials,

Vn(t) = 2−n/2Hn(
t√
2
), n = 0, 1, . . . .
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These formulas are used as basic to approximate solutions to b.-v.ps posed
(Vladimirov,2005).

5. Tchebyshev-series expantion of periodic solutions

We start with general equation (1.9)

ϕp(t) =
1√

4πx0

∫ ∞

−∞
exp

[
− (t− τ)2

4x0

]
ϕ(τ)dτ, t ∈ R, (5.1)

which is equivalent to the b.-v.p. for the non-linear heat equation

∂u

∂x
=
∂2u

∂t2
, 0 < x ≤ x0, t ∈ R, (5.2)

u(0, t) = ϕ(t), u(x0, t) = ϕp(t), t ∈ R. (5.3)

Here, using this method, we constract 2π-periodic solutions to Eq.(5.1). The
real 2π-periodic solutions to Eq.(5.2) is

u(x, t) = a0 +
∞∑

k=1

e−k2x(ak cos kt+ bk sin kt), (5.4)

where ak and bk are arbitrary real numbers satisfying for instance the condition

|a0|+
∞∑

k=1

(|ak|+ |bk|) <∞. (5.5)

From (5.4) and (5.2) it follows

ϕ(t) = a0 +
∞∑

k=1

[
akTk(cos t) + bk sin tUk−1(cos t)

]
, (1)

ϕp(t) = a0 +
∞∑

k=1

e−k2x0

[
akTk(cos t) + bk sin tUk−1(cos t)

]
, (5.6)

where Tk and Uk are Tchebyshev’s polynomials of the first and second genus
resp.

How to determine the coefficients ak and bk? For pure even or odd solutions
we have the following

Theorem 3. In order the formulas (5.6) represents real 2π- periodic
solutions ϕ to Eq.(5.1), it is necessary and sufficient, that the following equations
are fulfiled for all y, |y| < 1: for even solutions

∞∑
k=0

e−k2x0akTk(y) =
[ ∞∑

k=0

akTk(y)
]p

; (5.7)

for odd solutions, p is odd
∞∑

k=1

e−k2x0Uk−1y) = (1− y2)(p−1)/2
[ ∞∑

k=1

bkUk−1(y)
]p

. (2)
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That is the basis fo approximate solutions to Eq.(5.1).
The method can be extanded to many-dimentional case.

6. Applications of the Gauss quadrature formulas

The simplest Gauss qudrature formula is

1√
π

∫ ∞

−∞
e−t2ϕ(t)dt ≈

n∑
k=1

λknϕ(tkn), (6.1)

where points of interpolation tkn are the roots of Hermite’s polynomial Hn(t)
and coefficients λkn satisfy the relations

n∑
k=1

λknt
2m
kn =

∫ ∞

−∞
e−t2t2mdt = Γ(m+ 1/2),m = 0, 1, . . . , n− 1.

For instance, for n = 3, λ0 = 2/3, λ± = 1/6. t0 = 0, t± = ±
√

3/2. Applying
formula (6.1) to Eq.(5.1) for x0 = 1/4,

ϕp(t) =
1√
π

∫ ∞

−∞
e−τ2

ϕ(t− τ)dτ,

we get approximate Eq.

ϕp(t) = 2/3ϕ(0) + 1/6ϕ(t−
√

3/2) + 1/6ϕ(t+
√

3/2). (6.2)

The Eq.(6.2) gives satisfactory approximation to the solution, at least
qualitativelly. If we compare the asymptotic behavior at t → ∞ for solution
ϕ(t), ϕ(∞) = 1 to Eqs (5.1) and (6.2) for p = 3, so one get resp.

1− ϕ(t) ∼

{
Ce−2

√
log 3t = Ce−2,096t,

Ce−
√

3/2 log 7t = Ce−2,384t.

I.Ya.Aref’eva, in her deep astro-physical investigations, made many calculations
on computer for more general b.-v.p. (q2 = 0.9536)

ϕ3(t) =
1√
π

(1− q2∂2
t )

∫ ∞

−∞
e−(t−τ)2ϕ(τ)dτ, ϕ(±∞) = ±1 (6.3)

with n = 3, 5, 7, 9 points of approximation, and obtained satisfactory
approximation to the solution. The method may be used for more general
equations of motion in non-flate spaces.

If we represent Eq.(6.3) in the equivalent form

1
2

∫ ∞

0

e−τ [ϕ3(t− qτ) + ϕ3(t+ qτ)]dτ =
1√
π

∫ ∞

−∞
e−τ2

ϕ(t− τ)dτ, (6.4)

then we may apply to the left hand-side of Eq.(6.4) the quadrature formula with
Laguerre’s points of interpolation whereas to the right hand-side – the formula
(6.1). One may use more precise formulas with weights e−t2t2, e−t2t1/3,...

Note, that the existence of solutions to b.-v.p. (6.3) was proved by
Prokhorenko, 2006, for 0 ≤ q < 1; for q = 0 it was proved by Volovich-jr,
2004.
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